6 research outputs found

    What is the biological basis of pattern formation of skin lesions?

    Get PDF
    Pattern recognition is at the heart of clinical dermatology and dermatopathology. Yet, while every practitioner of the art of dermatological diagnosis recognizes the supreme value of diagnostic cues provided by defined patterns of 'efflorescences', few contemplate on the biological basis of pattern formation in and of skin lesions. Vice versa, developmental and theoretical biologists, who would be best prepared to study skin lesion patterns, are lamentably slow to discover this field as a uniquely instructive testing ground for probing theoretical concepts on pattern generation in the human system. As a result, we have at best scraped the surface of understanding the biological basis of pattern formation of skin lesions, and widely open questions dominate over definitive answer. As a symmetry-breaking force, pattern formation represents one of the most fundamental principles that nature enlists for system organization. Thus, the peculiar and often characteristic arrangements that skin lesions display provide a unique opportunity to reflect upon – and to experimentally dissect – the powerful organizing principles at the crossroads of developmental, skin and theoretical biology, genetics, and clinical dermatology that underlie these – increasingly less enigmatic – phenomena. The current 'Controversies' feature offers a range of different perspectives on how pattern formation of skin lesions can be approached. With this, we hope to encourage more systematic interdisciplinary research efforts geared at unraveling the many unsolved, yet utterly fascinating mysteries of dermatological pattern formation. In short: never a dull pattern

    Predictability of wind-induced sea surface transport in coastal areas

    No full text
    In this work we investigated the predictability of the wind-induced sea surface transport in coastal areas. The wind fields predicted by two state-of-the-art meteorological models, namely ECMWF and SKIRON, were used as forcing for a hydrodynamic and particle-tracking model applied to reproduce a set of observed drifters trajectories in a coastal area of the Mediterranean Sea. A set of anemometric data derived by in situ measurements were also adopted as model forcing to reproduce the observed drifter paths. This approach provided a baseline that was used as a reference for evaluating the effects of the predicted wind accuracy on the numerical model solution. The accuracy of the simulation results obtained using, as model forcing, the observed wind data was fair and suitable for most of the operational oceanographic purposes. It decreased when using the wind data predicted by the two meteorological models. In particular, the results obtained using ECMWF data were about 3 times more accurate than the ones obtained using SKIRON ones. The uncertainties were strongly dependent on the range of observed wind speed classes with a different behavior depending on the type of adopted wind data. Finally, the amplification of the errors in predicting the sea surface transport generated by the inaccuracies of the predicted wind fields was quantified

    D-dimer and reduced-dose apixaban for extended treatment after unprovoked venous thromboembolism: the Apidulcis study

    No full text
    D-dimer assay is used to stratify patients with unprovoked venous thromboembolism (VTE) for the risk of recurrence. However, this approach was never evaluated since direct oral anticoagulants are available. With this multicenter, prospective cohort study, we aimed to assess the value of an algorithm incorporating serial D-dimer testing and administration of reduced-dose apixaban (2.5 mg twice daily) only to patients with a positive test. A total of 732 outpatients aged 18 to 74 years, anticoagulated for ≥12 months after a first unprovoked VTE, were included. Patients underwent D-dimer testing with commercial assays and preestablished cutoffs. If the baseline D-dimer during anticoagulation was negative, anticoagulation was stopped and testing repeated after 15, 30, and 60 days. Patients with serially negative results (286 [39.1%]) were left without anticoagulation. At the first positive result, the remaining 446 patients (60.9%) were given apixaban for 18 months. All patients underwent follow-up planned for 18 months. The study was interrupted after a planned interim analysis for the high rate of primary outcomes (7.3%; 95% confidence interval [CI], 4.5-11.2), including symptomatic proximal deep vein thrombosis (DVT) or pulmonary embolism (PE) recurrence, death for VTE, and major bleeding occurring in patients off anticoagulation vs that in those receiving apixaban (1.1%; 95% CI, 0.4-2.6; adjusted hazard ratio [HR], 8.2; 95% CI, 3.2-25.3). In conclusion, in patients anticoagulated for ≥1 year after a first unprovoked VTE, the decision to further extend anticoagulation should not be based on D-dimer testing. The results confirmed the high efficacy and safety of reduced-dose apixaban against recurrences. This trial was registered at www.clinicaltrials.gov as #NCT03678506
    corecore